

Attachment E – Hydrogeologic Evaluation Report

Professional Hydrogeologists • Water Resources Specialists

July 26, 2023

Ms. Laura Wiese Moore L. Wiese Moore, LLC 2208 Churchill Loop Grapevine, Texas 76051

Re: Aquifer Evaluation Report – Drilling/Production Permit Applications for Two (2) New Simsboro Wells to be Completed on the Moore Property, Robertson County, Texas

Dear Ms. Moore:

Per your request and in compliance with the rules of the Brazos Valley Groundwater Conservation District (BVGCD), Thornhill Group, Inc. (TGI) provides herein an evaluation of the projected effect of L. WIESE MOORE, LLC, herein referenced as WIESE MOORE, completing two (2) new wells into the Simsboro Aquifer underlying the Moore Property in Robertson County, Texas and producing an annual allocation of 4,452 acre-feet per year.

The subject Moore Property encompasses approximately 590 contiguous acres of land. The eastern boundary of the property is three (3) miles west of the intersection of Farm Road 485 (FM 485) and State Highway 6/State Highway 79 (SH 6/SH 79) near downtown Hearne. The northern boundary of the Moore Property abuts FM 485 and the western boundary is along FM 1644. The western boundary of the farm is between 1.3 and 1.6 miles east of the Brazos River. Figure 1 provides the location of the subject property.

TGI conducted its evaluations and prepared this report in compliance with the rules and guidelines provided by the BVGCD, specifically in Rule 8.4(b)(7)(B) for wells (and multiple wells) capable of producing 800 or more acre-feet per year. TGI's evaluations focused on assessing local aquifer conditions and parameters, and the extent to which production from the subject wells may influence other groundwater users in the BVGCD. TGI's evaluations are based on previous investigations conducted in the District, including permit applications and field-testing associated with several local landowners. Additionally, TGI relied upon reported data, published reports, the applicable groundwater availability model (GAM), and TGI's extensive experience with and knowledge of the Simsboro Aquifer in Central Texas, within the BVGCD, and particularly in Robertson County. Specifically, TGI's work was conducted to accomplish the following goals:

- Assessing the local hydrogeologic setting, focusing on the physical characteristics and hydraulic parameters of the local Simsboro Aquifer;
- Estimating and calculating the potential short-term and long-term drawdown at each of the wells, including interference drawdown between wells;
- Evaluating potential interference drawdown from other pumpage in the area and predicting long-term water levels in the proposed well-field area;
- Establishing a target maximum proposed pumping rate for each well and for the aggregated well field;
- Modeling to assess the feasibility of the targeted pumping rate and the potential impacts (e.g., artesian pressure reduction) to the aquifer and other nearby well owners (e.g., drawdown); and,
- Providing this Hydrogeological Evaluation Report in compliance with District rules.

For convenience, applicable illustrations and supporting documentation are included in the following attachments:

Attachment 1 – Figures Attachment 2 – Tables Attachment 3 – Reference Materials Attachment 4 – Selected References

Proposed Pumping Locations and Permit Pumping Rates

Figure 1 illustrates the locations for the proposed Simsboro wells on the Moore Property. Proposed well identifications, coordinates, and estimated land-surface elevations in feet above mean sea level (MSL) as estimated from Google Earth are as follows:

Well			Est. Land Surface
Identification	Latitude*	Longitude*	Elevation
No. 1	30°52′19.14″N	96°38'55.23"W	274 feet AMSL
No. 2	30°52′03.41″N	96°39'32.28"W	273 feet AMSL
*Consultante sustains la NIADOD Chata Dia	Taura Cantural (faith)		

*Coordinate system is NAD83 State Plane Texas Central (feet)

The proposed production capacities in gallons per minute (gpm) and requested permit allocations in acre-feet per year are as follows:

Well	Maximum	Annual Permit
Identification	Pumping Rate	Allocation
No. 1	1,550 gpm	2,000 acre-feet
No. 2	1,900 gpm	2,452 acre-feet
Total Annua	4,452 acre-feet	

The radii attributed to the pumping rates for each of the wells lie within the Moore property boundaries. The nearest known existing wells completed into the Simsboro Aquifer are mapped by the BVGCD adjacent to the Moore property; however, the proposed Simsboro wells are sufficiently distant from existing wells. The proposed well locations comply with the BVGCD rules regarding spacing between wells and allocation of acreage per well.

Hydrogeologic Conditions and Aquifer Characteristics

Geologic Setting

Figure 2 illustrates that the entire Moore Property is underlain by downdip portions of the Carrizo-Wilcox Aquifer, a Major Aquifer delineated by the TWDB. Figure 3 shows that essentially the western half of the Moore property lies atop the Brazos River Alluvium Aquifer, a Minor Aquifer in Texas. The are no other Major or Minor aquifers beneath the subject property.

Figure 4 is a Surface Geology Map illustrating that the entire extent of the subject Moore Property lies atop the Brazos River Alluvium deposits. The surface geology maps shows that the Reklaw subcrops the alluvial deposits and an inferred trend indicates that the Reklaw (unconformably) underlies the alluvium across the entire property. The Carrizo Sand is likely relatively shallow and thin beneath the property due to proximity to the outcrop. Otherwise, the entire local sections of the Wilcox Group including, from younger to older, the Calvert Bluff, Simsboro, and Hooper formations occur beneath the subject property.

Due to the inherent nature of the floodplain and farming operations the topography across the Moore Property is relatively flat with land surface elevations ranging generally from 270 to 280 feet above mean sea level (MSL). Geologic units dip generally from the northnorthwest to the south-southeast. Locally, the dip along the base of the Wilcox Group is between 90 and 100 feet per mile (see Attachment 3). There are no faults mapped locally at land surface across the subject property. Based on available structural geology maps and GAM datasets estimates of the elevations and thicknesses of hydrostratigraphic layers beneath the Moore property are summarized in the table below:

Layer	Elevation	Depth	Thickness
Land Surface	270 to 280 feet AMSL	Not Applicable	Not Applicable
Base of Alluvium	200 to 210 feet AMSL	60 to 80 feet BGL	60 to 80 feet
Base of Reklaw	155 to 165 feet AMSL	105 to 125 feet BGL	25 to 65 feet
Base of Carrizo	105 to 120 feet AMSL	150 to 175 feet BGL	25 to 70 feet
Base of Calvert Bluff	690 to 705 feet BMSL	960 to 985 feet BGL	785 to 835 feet
Base of Simsboro	1,165 to 1,185 feet BMSL	1,435 to 1,465 feet BGL	450 to 505 feet
Base of Hooper	1,690 to 1,730 feet BMSL	1,960 to 2,010 feet BGL	495 to 575 feet

Aquifer Conditions and Hydraulic Parameters

This report focuses on proposed permitted production from the Simsboro Aguifer. The top of the Simsboro Formation is estimated to be at depths of between 950 and 1,050 feet BGL based on GAM datasets and BEG mapping (BEG, 1985). Net sand thickness maps indicate productive sands with thicknesses of between 350 and 450 feet, with sands potentially as thick as 500 feet. As most of the Simsboro Formation is comprised of sand, it is likely that Simsboro wells on the Moore Property will be between 1,400 and 1,550 feet deep. Figure 5 illustrates locations for registered and permitted Simsboro wells within five (5) miles of the proposed Moore wells. Attachment 4 provides available well records for selected nearby Simsboro wells. Figure 6 shows locations for registered and permitted Simsboro wells within one (1) mile of the proposed Moore wells locations. Figure 6a and Figure 6b provide the locations for Simsboro wells within one (1) mile of the proposed well locations on maps with a scale of 1"=1,000 feet per BVGCD Rules. Eight (8) Simsboro wells are mapped by BVGCD within one (1) mile of the Moore property. Four (4) of the wells are historic use Simsboro irrigation wells owned by Upwell/Brazos Valley Farms. Three (3) wells are domestic wells with reported depths ranging from 1,080 to 1,250 feet and one well has no record. The depths of the domestic wells ensures that groundwater can be produced in perpetuity with proper well completion.

TGI extracted hydraulic data for the subject property and nearby areas from the currentlyused version of the groundwater availability model (GAM) for the Central Portion of the Sparta, Queen City, and Carrizo-Wilcox Aquifers (Young, et al., 2018). Note that the units for hydraulic parameters are: gallons per day per square foot (gpd/ft²) for hydraulic conductivity; gallons per day per foot (gpd/ft) for transmissivity; and, dimensionless for storativity (or storage coefficient). The following table provides a summary of estimated parameters extracted from the GAM datasets to those derived by TGI for the local Carrizo and Simsboro aquifers across the Wiese Moore property:

	GAM	
<u>Parameter</u>	Estimates Range	TGI Estimates*
Aquifer/Sand Thickness	470 to 480 feet	350 to 450 feet
Hydraulic Conductivity	105 to 125 gpd/ft ²	125 to 175 gpd/ft ²
Transmissivity	51,000 to 58,000 gpd/ft	43,750 to 78,750 gpd/ft
Storage Coefficient	0.000151	0.0001 (0.0005)

The asterisk indicates that TGI utilized a storage coefficient representative of a slightly leaky artesian aquifer for the 10-year analytical model calculations.

Figure 7 provides two hydrographs illustrating water-level measurements collected for Texas Water Development Board (TWDB) and/or BVGCD Simsboro monitoring wells: the first chart

illustrates data for TWDB Well No. 59-03-437 (BVR-1283) which is the Lee Fazzino House Well located about seven (7) miles north-northwest of the center of the Moore property; and, the second well is TWDB Well No. 59-04-701 (BVHU-0013) which is the City of Hearne Well #4, also known as the POW well, which is 2.3 miles east-northeast of the center of the subject Moore property. Water levels declined from 1979 to 1999 by approximately 40 feet and 70 feet in the Lee Fazzino well and the POW well, respectively. Additionally, Advanced Groundwater Solutions (AGS) reported that water-levels declined between 1999 and 2023 by 44 feet in the Lee Fazzino House Well and by 81 feet in Hearne's POW well (see AGS, May 11, 2023). Also, AGS reported a 85-foot artesian pressure decline in TWDB Well No. 59-11-703 which is at the City of Gause and is about 6.8 miles southwest of the Moore property. AGS mapped water-level declines in the Simsboro of approximately 70 feet at the Moore property from 1999 to 2023 (AGS, May 11, 2023). Based on the updated data provided by AGS, current depths to water on the subject property will likely range from 150 to 250 feet BGL. Therefore, water levels will probably rise between 720 and 900 feet above the top of the aquifer in the proposed new wells, verifying that the local Simsboro is under artesian or confined conditions with hundreds of feet of artesian head.

Projected Effects of Proposed Pumping

The immediate impacts from production will be artesian head decline (i.e., drawdown) at the pumping wells. As the wells pump, artesian pressure or potentiometric head around the wells will decline forming a cone of depression. As production continues the cone of depression will extend radially from the well field until an aquifer boundary is reached or the production rate reaches equilibrium with the captured groundwater flows. Due to the distance of the proposed wells from the outcrop of the aquifer, reduction in artesian pressure is the only anticipated measurable effect from the proposed pumping. The aquifer will remain completely full and there will be only an infinitesimal reduction in storage. Pumping from the Simsboro aquifers will cause some vertical leakage from overlying and underlying zones. While leakage can serve to dampen drawdown due to boundary effects and inflows, the leakage will likely not result in any identifiable water-level changes or water-quality variations in any of the overlying or underlying zones.

Drawdown Simulations Using the GAM

TGI utilized the recently released revision and update of the Central Portion of the Sparta, Queen City, and Carrizo-Wilcox Aquifers GAM to calculate drawdown due to the proposed pumping for continuous pumping periods of one (1) year and 10 years from the Simsboro Aquifer. L. Wiese Moore, LLC has requested a permit allocation for the Simsboro Aquifer of 4,452 acre-feet per year. Figure 8 and Figure 9 provide maps showing modeled drawdown contours after one (1) year and 10 years of pumping at the proposed authorized annual rate,

respectively. Table 1 and Table 2 provide modeled drawdown at specific registered and permitted Simsboro well sites after one (1) year and 10 years of continuous pumping, respectively. The GAM predicts that Simsboro artesian pressure will decline by as much as 29 feet immediately adjacent to the Moore property and from 16 to 19 feet one (1) mile from the proposed wells within the first year of pumping. Declines during the initial year are simulated to be less than 5 to 7 feet five (5) miles of the wells. After 10 years of pumping the proposed Simsboro wells drawdown (i.e., artesian head decline) will be as much as 31 feet adjacent to the subject property and range from 18 to 20 feet one (1) mile from the well locations. Simulated drawdown 7 to 8 feet five (5) miles from the wells. Based on the geologic structure, estimates of current artesian head, and drawdown calculated from the well-field area and within the five-mile radius. Local wells will continue to maintain a few hundred feet of artesian head.

Drawdown Simulations Using Analytical Modeling

Due to the scale and configuration of the GAM grid, the GAM probably does not provide accurate drawdown calculations for the specific well sites and areas in the immediate vicinity of the proposed well field. Therefore, for comparison purposes and per the BVGCD rules TGI used an analytical modeling program based on the Theis non-equilibrium equation to calculate theoretical potentiometric head declines at and surrounding the proposed production wells. TGI has used the Theis model for several previous submittals to the BVGCD as well as for evaluations and submittals to numerous districts across the State of Texas. The Theis model incorporates many assumptions, most of which are sufficiently satisfied in the local Simsboro aquifer. However, the Theis model assumes an aquifer that is uniform over an infinite area. To account for recharge boundaries and possible inter-aquifer leakage into the producing aquifers, TGI modeled long-term pumping (i.e., from one to 10 years) by incorporating a leaky artesian storage coefficient. However, it is likely that, while the Theis model likely provides more reliable results within and near the well field, it probably overstates drawdown at distance from the pumping center. Also, the Theis model is more accurate for shorter pumping durations; therefore, the 10-year calculation likely overestimates drawdown from the well fields.

Figure 10 and Figure 11 provide drawdown contours from Theis calculations due to pumping the Simsboro wells proposed for the Moore Property after one (1) and 10 years, respectively. Table 1 and Table 2 provide drawdown values at specific well locations. The analytical model calculated artesian pressure declines of as much as 45 feet adjacent to the subject property after one (1) year of pumping. Drawdown at a distance of one (1) mile was modeled to be 36 to 38 feet after the first year of pumping. At five (5) miles away the drawdown calculation resulted in 22 to 23 feet after a year. After 10 years the calculated drawdown at the Moore

property line is as much as 48 feet and the drawdown at a distance of a mile was modeled to be 39 to 41 feet. The drawdown at five (5) miles was modeled to be between 26 and 27 feet.

Conclusions

Based on our review of the BVGCD rules and the work conducted as described herein, TGI concludes the following:

- The proposed wells and pumping amounts for the Moore Property can be completed and produced in accordance with the well spacing and production-based acreage (i.e., allocation) rules set forth by the BVGCD;
- The predicted drawdown derived from the Theis analytical model are more accurate than the GAM predictions for the proposed well sites and areas near the well field;
- GAM-predicted drawdown probably provides a more reasonable estimate of future impacts at greater distances from the proposed well field and for longer time periods. The updated GAM predicts significantly less drawdown regionally than the previous version of the GAM; and,
- Production from the proposed pumping will cause only infinitesimal reduction in aquifer storage as the local Simsboro Aquifer will stay completely full and groundwater in the formation will remain under considerable artesian pressure within the well-field areas and the five-mile study radius.

We very much appreciate the opportunity to again assist you in our specialty. If you have any questions, please call.

The seal appearing on this document was authorized by Michael R. Thornhill, P.G. on July 26, 2023.

Attachments

Sincerely, THORNHILL GROUP, INC.

Mehal R. Firmbill

Michael R. Thornhill, P.G. President

ATTACHMENT 1 – FIGURES

Figure 7

ATTACHMENT 2 – TABLES

Owner	Registration or Permit Number	Latitude	Longitude	Well Depth	Aquifer	Casing Diameter (in)	1 Year Analytical Drawdon, ft.	10 Year Analytical Drawdown, ft.	1 Year GAM Drawdown, ft.	10 Year GAM Drawdown, ft.
CA Skiles Family Partnership, Ltd.	BVHU-1058C	30.870200	-96.668713	1,100	Simsboro	30,16	40	44	21	24
CA Skiles Family Partnership, Ltd.	BVHU-1058D	30.873824	-96.658706	1,131	Simsboro	30,16	45	48	23	26
CA Skiles Family Partnership, Ltd.	BVHU-1058E	30.876867	-96.649833	1,175	Simsboro	30,16	44	47	22	25
CA Skiles Family Partnership, Ltd.	BVHU-1058F	30.877300	-96.667783	1,065	Simsboro	30,16	38	42	17	19
Ryan, Melvin & Sandra	BVR-0380	30.867554	-96.636420	1,100	Simsboro	4,2	38	41	17	20
Zeig, Joey	BVR-1479	30.871121	-96.634251	1,080	Simsboro	8,4,2	37	40	17	20
Mears, Frank	BVR-1506	30.870019	-96.669033	1,250	Simsboro	2	40	43	20	23
Wallace, Zane & Virginia	BVR-1845	30.871595	-96.637759	1,100	Simsboro	4,2	39	42	19	22

Table 1. Simulated Drawdown at Registered and Permitted Simsboro Wells Within a 1-Mile Radius

Owner	Registration or Permit Number	Latitude	Longitude	Well Depth	Aquifer	Casing Diameter (in)	1 Year Analytical Drawdon, ft.	10 Year Analytical Drawdown, ft.	1 Year GAM Drawdown, ft.	10 Year GAM Drawdown, ft.
Ryan, Sandra & Sloat, Bernadette	BVDO-0055	30.920306	-96.679457	840	Simsboro	30,16	25	29	4	6
Skiles, Clifford III	BVDO-0108	30.851042	-96.635889	1,242	Simsboro	30,16	33	36	12	15
Brien, James & Ellen	BVDO-0134	30.916389	-96.694167	778	Simsboro	30,16	25	28	3	5
CA Skiles Family Partnership, Ltd.	BVDO-0254	30.886626	-96.658433	1,205	Simsboro	30,18	36	39	13	16
CA Skiles Family Partnership, Ltd.	BVDO-0255	30.903856	-96.662094	1,240	Simsboro	30 , 18	30	33	7	10
CA Skiles Family Partnership, Ltd.	BVDO-0256	30.919825	-96.641585	1,225	Simsboro	30,18	26	29	5	8
City of Hearne	BVHU-0011	30.875673	-96.588479	1,433	Simsboro	14 , 8 5/8	25	28	6	9
City of Hearne	BVHU-0012	30.886263	-96.590453	1,430	Simsboro	12,6	25	28	6	9
City of Hearne	BVHU-0013	30.885707	-96.619201	1,441	Simsboro	10,8,6	30	33	10	13
City of Hearne	BVHU-0014	30.879554	-96.598692	1,275	Simsboro	12,10,8,7	26	30	7	10
CA Skiles Family Partnership, Ltd.	BVHU-1058	30.896850	-96.677267	930	Simsboro	16	30	33	7	10
CA Skiles Family Partnership, Ltd.	BVHU-1058A	30.866028	-96.689233	1,095	Simsboro	30,16	31	35	11	13
CA Skiles Family Partnership, Ltd.	BVHU-1058B	30.867349	-96.678991	1,090	Simsboro	30,16	35	38	14	17
CA Skiles Family Partnership, Ltd.	BVHU-1058C	30.870200	-96.668713	1,100	Simsboro	30,16	40	44	21	24
CA Skiles Family Partnership, Ltd.	BVHU-1058D	30.873824	-96.658706	1,131	Simsboro	30,16	45	48	23	26
CA Skiles Family Partnership, Ltd.	BVHU-1058E	30.876867	-96.649833	1,175	Simsboro	30,16	44	47	22	25
CA Skiles Family Partnership, Ltd.	BVHU-1058F	30.877300	-96.667783	1,065	Simsboro	30,16	38	42	17	19
CA Skiles Family Partnership, Ltd.	BVHU-1058G	30.898588	-96.645434	964	Simsboro	30,16	31	35	9	12
CA Skiles Family Partnership, Ltd.	BVHU-1058H	30.889917	-96.671117	979	Simsboro	30,16	33	36	10	13
CA Skiles Family Partnership, Ltd.	BVHU-1058J	30.914647	-96.671122	875	Simsboro	30,16	27	30	5	7
CA Skiles Family Partnership, Ltd.	BVHU-1058K	30.924333	-96.702966	720	Simsboro	30,16	23	26	2	4

Table 2. Simulated Drawdown at Registered and Permitted Simsboro Wells Within a 5-Mile Radius

Owner	Registration or Permit Number	Latitude	Longitude	Well Depth	Aquifer	Casing Diameter (in)	1 Year Analytical Drawdon, ft.	10 Year Analytical Drawdown, ft.	1 Year GAM Drawdown, ft.	10 Year GAM Drawdown, ft.
CA Skiles Family Partnership, Ltd.	BVHU-1058L	30.920417	-96.714283	691	Simsboro	30,16	23	26	2	4
Bishop, Doris & Others	BVR-0060	30.902652	-96.624694	1,193	Simsboro	4,2	28	31	7	10
CA Skiles Family Partnership, Ltd.	BVR-0240	30.881350	-96.670083	1,065	Simsboro	4	36	39	14	16
Ryan, Melvin & Sandra	BVR-0380	30.867554	-96.636420	1,100	Simsboro	4,2	38	41	17	20
Manterola, Jane Anderson	BVR-0434	30.913686	-96.705731	400	Simsboro	UNKN	24	27	3	5
Ryan, Sandra & Sloat, Bernadette	BVR-0985	30.923989	-96.673093	735	Simsboro	4,2	25	28	4	6
Brien, James & Ellen	BVR-1018	30.918418	-96.685023	UNKN	Simsboro	4	25	28	4	6
Zeig, Joey	BVR-1479	30.871121	-96.634251	1,080	Simsboro	8,4,2	37	40	17	20
Mears, Frank	BVR-1506	30.870019	-96.669033	1,250	Simsboro	2	40	43	20	23
Wallace, Zane & Virginia	BVR-1845	30.871595	-96.637759	1,100	Simsboro	4,2	39	42	19	22
Zeig, Larry J.	BVR-3187	30.908888	-96.605462	1,270	Simsboro	4,2	25	28	5	9
Swaner, Ronald D.	BVR-3190	30.906117	-96.605510	1,225	Simsboro	4,2	25	29	6	9

ATTACHMENT 3 – REFERENCE MATERIALS

PLATE 2 THE WILCOX GROUP AND CARRIZO SAND (PALEOGENE) IN EAST-CENTRAL TEXAS: DEPOSITIONAL SYSTEMS AND DEEP-BASIN LIGNITE

Graben, salt structures in Anderson and Freestone Counties, and the East Texas Basin (fig. 2).

THE UNIVERSITY OF TEXAS AT AUSTIN BUREAU OF ECONOMIC GEOLOGY W. L. FISHER, DIRECTOR

Base map adapted from Army Map Service base maps. 10,000meter Universal Transverse Mercator grid, zones 14 and 15. Cartography by John T. Ames under the supervision of Richard L. Dillon.

by W. B. Ayers, Jr., and Amy H. Lewis

PLATE 3. WILCOX ISOPACH MAP AND LOCATIONS OF CROSS SECTIONS

PLATE 3 THE WILCOX GROUP AND CARRIZO SAND (PALEOGENE) IN EAST-CENTRAL TEXAS: DEPOSITIONAL SYSTEMS AND DEEP-BASIN LIGNITE

The Wilcox Group thickens from less than 1,000 ft (305 m) on the north to more than 3,500 ft (1,065 m) at the basinward margin of the study area. The local increase in thickness in central Lee County is attributed to syndepositional movement along the Mexia Fault Zone (fig. 2 and pl. 2).

PLATE 5 THE WILCOX GROUP AND CARRIZO SAND (PALEOGENE) IN EAST-CENTRAL TEXAS: DEPOSITIONAL SYSTEMS AND DEEP-BASIN LIGNITE

Dip-elongate major sand bodies (sands 40 ft [12 m] or thicker) in the shallow subsurface are straight; they bifurcate, displaying a deltaic geometry, in Fayette County and terminate in small delta lobes in Houston County. When projected updip, sand-body trends southwest of Leon County (Rockdale fluvial-deltaic system) intersect at a broad locus in Coryell County (fig. 3). Sand-body trends in Anderson and Houston Counties (secondary fluvial system with sources to the north and northeast) are directed into the axis of the East Texas Basin (fig. 2 and pl. 2).

QAe1984-5

THE UNIVERSITY OF TEXAS AT AUSTIN BUREAU OF ECONOMIC GEOLOGY W. L. FISHER, DIRECTOR

С NORTHWEST

PLATE 8 THE WILCOX GROUP AND CARRIZO SAND (PALEOGENE) IN EAST-CENTRAL TEXAS: DEPOSITIONAL SYSTEMS AND DEEP-BASIN LIGNITE

SOUTHEAST

Economic Geology. Cartography by John T. Ames under the supervision of Richard L. Dillon.

seams within the zones is neither implied nor true; wells were drilled in low-sand

(floodbasin) areas between major-sand axes, which limit seam continuity. See plate 3 for location. Full-scale geophysical well logs are available from the Bureau of

by W. B. Ayers, Jr., and Amy H. Lewis PLATE 22. LIGNITE CROSS SECTION X-X' 1985

EXPLANATION Zone of thick lignite (1 or more seams ≥5ft [1.5m]) 333-343 ■ Cored interval

PLATE 28 THE WILCOX GROUP AND CARRIZO SAND (PALEOGENE) IN EAST-CENTRAL TEXAS: DEPOSITIONAL SYSTEMS AND DEEP-BASIN LIGNITE

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5903437
County	Robertson
River Basin	Brazos
Groundwater Management Area	12
Regional Water Planning Area	G - Brazos G
Groundwater Conservation District	Brazos Valley GCD
Latitude (decimal degrees)	30.938611
Latitude (degrees minutes seconds)	30° 56' 19" N
Longitude (decimal degrees)	-96.741667
Longitude (degrees minutes seconds)	096° 44' 30" W
Coordinate Source	+/- 1 Second
Aquifer Code	124SMBR - Simsboro Sand Member of Rockdale Formation
Aquifer	Carrizo-Wilcox
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	290
Land Surface Elevation Method	Interpolated From Topo Map
Well Depth (feet below land surface)	460
Well Depth Source	Owner
Drilling Start Date	
Drilling End Date	0/0/1975
Drilling Method	
Borehole Completion	

Well Type	Withdrawal of Water
Well Use	Domestic
Water Level Observation	GCD Current Site Visit
Water Quality Available	Yes
Pump	Submersible
Pump Depth (feet below land surface)	
Power Type	Electric Motor
Annular Seal Method	
Surface Completion	
Owner	Lee Fazzino Sr.
Driller	G. P. Brien
Other Data Available	
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	11/12/1992
Last Update Date	9/5/2014

Remarks Historical observation well.

Casing								
Diameter (in.)	Casing Type	Casing Material	Schedule	Gauge	Top Depth (ft.)	Bottom Depth (ft.)		
4	Blank				0	16		
2	Screen				450	46		
Lithology - I Annular Sea	No Data al Range - No D	ata						
Borehole - N	lo Data		Plugg	Plugged Back - No Data				
Filter Pack -	No Data			Pack	rers - No Data			

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Х	8/12/1975	Î	Î	Î		1	Registered Water Well Driller	Î	27	Î
Ρ	10/9/1979		1.65		288.35	1	Other or Source of Measurement Unknown	Unknown		
Р	10/29/1979		1.65	0.00	288.35	1	Texas Water Development Board	Steel Tape		
Р	3/20/1980		0.5	(1.15)	289.5	1	Texas Water Development Board	Steel Tape		
Р	4/29/1981		0.95	0.45	289.05	1	Texas Water Development Board	Steel Tape		
Р	3/24/1982		6.6	5.65	283.4	1	Texas Water Development Board	Steel Tape		
Р	11/12/1982		6.88	0.28	283.12	1	Texas Water Development Board	Steel Tape		
Р	11/9/1983		7.07	0.19	282.93	1	Texas Water Development Board	Steel Tape		
Р	11/16/1984		11.3	4.23	278.7	1	Texas Water Development Board	Steel Tape		
Р	11/6/1985		13.19	1.89	276.81	1	Texas Water Development Board	Steel Tape		
Р	12/17/1986		13.22	0.03	276.78	1	Texas Water Development Board	Steel Tape		
Р	11/18/1987		14.02	0.80	275.98	1	Texas Water Development Board	Steel Tape		
Q	1/11/1989		19.65	5.63	270.35	1	Texas Water Development Board	Steel Tape	2	
Q	11/8/1989		19.9	0.25	270.1	1	Texas Water Development Board	Steel Tape	2	
Q	11/7/1990		23.05	3.15	266.95	1	Texas Water Development Board	Steel Tape	2	
Р	11/15/1991		24.26	1.21	265.74	1	Texas Water Development Board	Steel Tape		
Р	11/12/1992		23.7	(0.56)	266.3	1	Texas Water Development Board	Steel Tape		
Р	3/22/1994		25.8	2.10	264.2	1	Texas Water Development Board	Steel Tape		
Ρ	12/12/1994		28.05	2.25	261.95	1	Texas Water Development Board	Steel Tape		
Р	11/15/1995		28.1	0.05	261.9	1	Texas Water Development Board	Steel Tape		
Р	11/12/1996		35	6.90	255	1	Texas Water Development Board	Steel Tape		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Q	11/3/1997		35.7	0.70	254.3	1	Texas Water Development Board	Steel Tape	2	
Р	11/17/1998		37.32	1.62	252.68	1	Texas Water Development Board	Steel Tape		
Р	11/9/1999		40.15	2.83	249.85	1	Texas Water Development Board	Steel Tape		
Р	2/19/2001		42.5	2.35	247.5	1	Texas Water Development Board	Steel Tape		
Р	11/15/2001		44.31	1.81	245.69	1	Texas Water Development Board	Steel Tape		
х	11/11/2002					1	Texas Water Development Board		30	
Х	10/9/2003					1	Texas Water Development Board		30	
х	2/26/2005					1	Texas Water Development Board		30	
х	12/14/2005					1	Texas Water Development Board		30	
Ρ	1/19/2010		60.4		229.6	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	4/22/2010		55.6	(4.80)	234.4	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	6/8/2010		68.2	12.60	221.8	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	8/6/2010		86	17.80	204	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	10/18/2010		65	(21.00)	225	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	12/6/2010		62.4	(2.60)	227.6	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	2/17/2011		63	0.60	227	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	3/24/2011		57.5	(5.50)	232.5	1	Groundwater Conservation District	Sonic/Laser Device		
Р	4/25/2011		67.7	10.20	222.3	1	Groundwater Conservation District	Sonic/Laser Device		
Q	8/11/2011		137	69.30	153	1	Groundwater Conservation District	Sonic/Laser Device	12	
Р	10/10/2011		92.2	(44.80)	197.8	1	Groundwater Conservation District	Sonic/Laser Device		
Р	1/10/2012		73.2	(19.00)	216.8	1	Groundwater Conservation District	Sonic/Laser Device		
P	1/11/2012		73	(0.20)	217	1	Groundwater Conservation District	Sonic/Laser Device		
Р	3/20/2012		72.8	(0.20)	217.2	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	3/27/2012		71.7	(1.10)	218.3	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	5/31/2012		71.4	(0.30)	218.6	1	Groundwater Conservation District	Sonic/Laser Device		
P	6/26/2012		72	0.60	218	1	Groundwater Conservation District	Sonic/Laser Device		
P	7/16/2012		76.4	4.40	213.6	1	Groundwater Conservation District	Sonic/Laser Device		
P	8/13/2012		104.8	28.40	185.2	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	10/2/2012		78.6	(26.20)	211.4	1	Groundwater Conservation District	Sonic/Laser Device		
P	11/5/2012		75.5	(3.10)	214.5	1	Groundwater Conservation District	Sonic/Laser Device		
Р	12/6/2012		72.5	(3.00)	217.5	1	Groundwater Conservation District	Sonic/Laser Device		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	1/3/2013		70.2	(2.30)	219.8	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	2/7/2013		69.8	(0.40)	220.2	1	Groundwater Conservation District	Sonic/Laser Device		
Р	3/4/2013		68.6	(1.20)	221.4	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	4/2/2013		69.1	0.50	220.9	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	5/6/2013		70.3	1.20	219.7	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	6/3/2013		68.3	(2.00)	221.7	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	7/12/2013		72.7	4.40	217.3	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	10/1/2013		78.7	6.00	211.3	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	11/5/2013		78.4	(0.30)	211.6	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	12/16/2013		74.4	(4.00)	215.6	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	1/3/2014		73.2	(1.20)	216.8	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	2/3/2014		72.6	(0.60)	217.4	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	3/3/2014		70.6	(2.00)	219.4	1	Groundwater Conservation District	Sonic/Laser Device		
Р	4/1/2014		68.8	(1.80)	221.2	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	5/2/2014		75.4	6.60	214.6	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	6/5/2014		76.8	1.40	213.2	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	7/7/2014		76.8	0.00	213.2	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	9/4/2014		78.9	2.10	211.1	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	10/1/2014		85.3	6.40	204.7	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	11/3/2014		82.2	(3.10)	207.8	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	12/1/2014		72.7	(9.50)	217.3	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	1/5/2015		69.6	(3.10)	220.4	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	2/2/2015		72.8	3.20	217.2	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	3/2/2015		69.2	(3.60)	220.8	1	Groundwater Conservation District	Electric Line		
Р	1/22/2016		67.33	(1.87)	222.67	1	Groundwater Conservation District	Electric Line		
Ρ	4/12/2016		64.16	(3.17)	225.84	1	Groundwater Conservation District	Electric Line		
Ρ	7/8/2016		87.74	23.58	202.26	1	Groundwater Conservation District	Electric Line		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	10/30/2016		71.75	(15.99)	218.25	1	Groundwater Conservation District	Electric Line		
Ρ	1/29/2017		66.02	(5.73)	223.98	1	Groundwater Conservation District	Electric Line		
Ρ	6/2/2017		66.02	0.00	223.98	1	Groundwater Conservation District	Electric Line		
Ρ	9/21/2017	13:2	76.42	10.40	213.58	1	Groundwater Conservation District	Electric Line		
Ρ	11/26/2017	17:1	69.56	(6.86)	220.44	1	Groundwater Conservation District	Steel Tape		
Ρ	3/14/2018	10:5	65.55	(4.01)	224.45	1	Groundwater Conservation District	Electric Line		
Ρ	6/4/2018	12:1	83.75	18.20	206.25	1	Groundwater Conservation District	Electric Line		
Р	10/9/2018		80.04	(3.71)	209.96	1	Groundwater Conservation District	Electric Line		Static < 24 hrs
Р	3/19/2019		65.69	(14.35)	224.31	1	Groundwater Conservation District	Electric Line		Static
Ρ	6/3/2019		63.46	(2.23)	226.54	1	Groundwater Conservation District	Steel Tape		Static
Ρ	10/3/2019		77.04	13.58	212.96	1	Groundwater Conservation District	Steel Tape		Static < 24 hrs
Ρ	3/11/2020		66.09	(10.95)	223.91	1	Groundwater Conservation District	Electric Line		Static
Ρ	6/10/2020		87.47	21.38	202.53	1	Groundwater Conservation District	Steel Tape		Static < 24 hrs
Ρ	9/16/2020		81.38	(6.09)	208.62	1	Groundwater Conservation District	Steel Tape		
Ρ	12/17/2020		73.1	(8.28)	216.9	1	Groundwater Conservation District	Steel Tape		
Ρ	3/22/2021		71.2	(1.90)	218.8	1	Groundwater Conservation District	Steel Tape		
Ρ	6/18/2021		70.89	(0.31)	219.11	1	Groundwater Conservation District	Steel Tape		
Ρ	9/22/2021		81.64	10.75	208.36	1	Groundwater Conservation District	Steel Tape		
Ρ	2/15/2022		74.44	(7.20)	215.56	1	Groundwater Conservation District	Steel Tape		
Ρ	6/8/2022		92.14	17.70	197.86	1	Groundwater Conservation District	Electric Line		
Q	7/26/2022		147.65	55.51	142.35	1	Groundwater Conservation District	Steel Tape	12	Farm Pivot
Q	8/2/2022		147.5	(0.15)	142.5	1	Groundwater Conservation District	Sonic/Laser Device	12	

Code Descriptions

Status Code	Status Description
Ρ	Publishable
Q	Questionable
Х	No Measurement

Remark ID	Remark Description
2	Pumping-level measurement
12	Uncertain of reason for questionable measurement
27	Well flowing and unable to shut-in
30	Well temporarily inaccessible due to impassable roads, locked gate, etc.

 Sample Date:
 3/20/1980
 Sample Time:
 0000
 Sample Number:
 1
 Collection Entity:
 Texas Water Development Board

 Sampled Aquifer:
 Simsboro Sand Member of Rockdale Formation
 Analyzed Lab:
 Texas Department of Health
 Reliability:
 Collected from pumped well, but not filtered or preserved

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		5	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		318	mg/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		375.87	mg/L	
00910	CALCIUM (MG/L)		4	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		6	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		43	mg/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.4	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		12	mg/L	
00920	MAGNESIUM (MG/L)		0.5	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)	<	0.1	mg/L	
00400	PH (STANDARD UNITS), FIELD		8.5	SU	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		6.12		
00955	SILICA, DISSOLVED (MG/L AS SI02)		15	mg/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		21.31		
00932	SODIUM, CALCULATED, PERCENT		96	PCT	
00929	SODIUM, TOTAL (MG/L AS NA)		170	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		755	MICR	
00945	SULFATE, TOTAL (MG/L AS SO4)		2.9	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		23	С	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		426	mg/L	

 Sample Date:
 7/29/1987
 Sample Time:
 0000
 Sample Number:
 1
 Collection Entity:
 Texas Water Development Board

Sampled Aquifer: Simsboro Sand Member of Rockdale Formation

Analyzed Lab: Texas Department of Health

Reliability: Reliability unknown or not available

Collection Remarks: No Data

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		5	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		316	mg/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		373.43	mg/L	
00910	CALCIUM (MG/L)		4	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		6	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		45	mg/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.4	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		14	mg/L	
00920	MAGNESIUM (MG/L)		1	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		0.04	mg/L	
00400	PH (STANDARD UNITS), FIELD		8.5	SU	
00937	POTASSIUM, TOTAL (MG/L AS K)		1	mg/L	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		6.04		
00955	SILICA, DISSOLVED (MG/L AS SI02)		15	mg/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		19.7		
00932	SODIUM, CALCULATED, PERCENT		96	PCT	
00929	SODIUM, TOTAL (MG/L AS NA)		170	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		755	MICR	
00945	SULFATE, TOTAL (MG/L AS SO4)		3	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		25	С	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		429	mg/L	

* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (https://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData @twdb.texas.gov.

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

5904701
Robertson
Brazos
12
G - Brazos G
Brazos Valley GCD
30.885834
30° 53' 09" N
-96.619444
096° 37' 10" W
Global Positioning System - GPS
124SMBR - Simsboro Sand Member of Rockdale Formation
Carrizo-Wilcox
296
Interpolated From Topo Map
1441
Driller's Log
11/13/1942
Mud (Hydraulic) Rotary
Gravel Pack w/Screen

Well Type	Withdrawal of Water
Well Use	Public Supply
Water Level Observation	GCD Current Site Visit
Water Quality Available	Yes
Pump	Submersible
Pump Depth (feet below land surface)	
Power Type	Electric Motor
Annular Seal Method	
Surface Completion	
Owner	City of Hearne Well #4 POW Camp
Driller	Layne-Texas Co.
Other Data Available	Drillers Log
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	G1980004D
Groundwater Conservation District Well Number	
Owner Well Number	4 POW Camp
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	3/13/1998
Last Update Date	4/19/2017

Remarks

Casing						
Diameter (in.)	Casing Type	Casing Material	Schedule	Gauge	Top Depth (ft.)	Bottom Depth (ft.)
10	Blank	Steel			0	110
8	Blank	Steel			0	1203
6	Blank	Steel			1163	1221
6	Screen	Stainless Steel			1221	1261
6	Screen	Stainless Steel			1276	1316
6	Screen	Stainless Steel			1326	1426

Well Tests - No Data

Lithology		
Top Depth (ft.)	Bottom Depth (ft.)	Description
0	40	Yellow Sand
40	46	Shale
46	48	Rock

48	69	Sand
69	73	Shale
73	74	Rock
74	87	Shale
87	264	Sand
264	288	Shale
288	299	Hard Sand
299	300	Rock
300	325	Hard Sand
325	409	Shale and Sand
409	427	Sand
427	493	Shale
493	504	Sandy Shale
504	505	Rock
505	521	Shale
521	522	Rock
522	556	Shale and Sand
556	560	Sand
560	596	Shale and Lignite
596	628	Shale and Sand
628	629	Rock
629	656	Shale
656	678	Sand
678	708	Shale and Sand
708	718	Hard Shale and Sand
718	723	Shale and Sand
723	845	Shale
845	856	Sand
856	901	Shale
901	916	Sand
916	927	Shale
927	943	Gumbo
943	993	Sand
993	1004	Sand and Shale
1004	1045	Shale
1045	1049	Sand and Rock
1049	1062	Sandy Shale
1062	1123	Shale
1123	1190	Sandy Shale
1190	1193	Sandy Shale
1193	1262	Sand
1262	1268	Shale
1268	1315	Sand
1315	1316	Rock
1316	1430	Sand

1430	1440 Shale	
Annular Seal Range -	No Data	
Borehole - No Data		Plugged Back - No Data
Filter Pack - No Data		Packers - No Data

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	11/9/1979		8.05		287.95	1	Other or Source of Measurement Unknown	Unknown		
Ρ	11/19/1979		8.05	0.00	287.95	1	Texas Water Development Board	Steel Tape		
Р	3/21/1980		6	(2.05)	290	1	Texas Water Development Board	Steel Tape		
Р	3/27/1981		10.98	4.98	285.02	1	Other or Source of Measurement Unknown	Unknown		
Р	4/27/1981		10.98	0.00	285.02	1	Texas Water Development Board	Steel Tape		
х	3/24/1982					1	Texas Water Development Board		19	
Р	11/12/1982		21.04		274.96	1	Texas Water Development Board	Steel Tape		
Р	11/9/1983		22.45	1.41	273.55	1	Texas Water Development Board	Steel Tape		
Р	11/16/1984		30	7.55	266	1	Texas Water Development Board	Steel Tape		
Р	11/6/1985		32.65	2.65	263.35	1	Texas Water Development Board	Steel Tape		
Р	12/16/1986		31.84	(0.81)	264.16	1	Texas Water Development Board	Steel Tape		
Р	11/18/1987		35.92	4.08	260.08	1	Texas Water Development Board	Steel Tape		
Р	1/12/1989		41.95	6.03	254.05	1	Texas Water Development Board	Steel Tape		
Р	11/8/1989		44.07	2.12	251.93	1	Texas Water Development Board	Steel Tape		
Р	11/12/1990		48.79	4.72	247.21	1	Texas Water Development Board	Steel Tape		
Р	11/4/1991		49.66	0.87	246.34	1	Texas Water Development Board	Steel Tape		
Р	11/13/1992		51.25	1.59	244.75	1	Texas Water Development Board	Steel Tape		
Ρ	3/21/1994		65.5	14.25	230.5	1	Texas Water Development Board	Steel Tape		
Q	12/8/1994		75.8	10.30	220.2	1	Texas Water Development Board	Steel Tape	2	
Ρ	11/15/1995		57.4	(18.40)	238.6	1	Texas Water Development Board	Steel Tape		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Р	11/12/1996		63.12	5.72	232.88	1	Texas Water Development Board	Steel Tape		
х	11/5/1997					1	Texas Water Development Board		19	
х	11/17/1998					1	Texas Water Development Board		19	
Q	11/10/1999		76.88		219.12	1	Texas Water Development Board	Steel Tape	4	
Ρ	9/13/2000		83.3	6.42	212.7	1	Texas Water Development Board	Steel Tape		
Р	11/16/2001		85.79	2.49	210.21	1	Texas Water Development Board	Steel Tape		
Q	11/12/2002		90.06	4.27	205.94	1	Texas Water Development Board	Steel Tape	16	
х	10/10/2003					1	Texas Water Development Board		19	
Р	2/23/2005		83.15		212.85	1	Texas Water Development Board	Steel Tape		
Р	12/15/2005		95	11.85	201	1	Texas Water Development Board	Steel Tape		
Р	12/15/2006		100.04	5.04	195.96	1	Texas Water Development Board	Steel Tape		
Q	11/5/2007		95.7	(4.34)	200.3	1	Texas Water Development Board	Steel Tape	4	
Р	2/25/2009		99.96	4.26	196.04	1	Texas Water Development Board	Steel Tape		
Ρ	1/27/2010		107.67	7.71	188.33	1	Texas Water Development Board	Steel Tape		
Ρ	1/13/2011		113.72	6.05	182.28	1	Texas Water Development Board	Steel Tape		
Ρ	3/24/2011		118	4.28	178	1	Groundwater Conservation District	Sonic/Laser Device		
Р	4/13/2011		109.8	(8.20)	186.2	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	6/8/2011		135.4	25.60	160.6	1	Groundwater Conservation District	Sonic/Laser Device		
Р	7/18/2011		151.3	15.90	144.7	1	Groundwater Conservation District	Sonic/Laser Device		
Р	10/6/2011		151.6	0.30	144.4	1	Groundwater Conservation District	Sonic/Laser Device		
Р	1/11/2012		130.8	(20.80)	165.2	1	Groundwater Conservation District	Sonic/Laser Device		
Р	2/20/2012		124.6	(6.20)	171.4	1	Groundwater Conservation District	Sonic/Laser Device		
P	4/4/2012		120	(4.60)	176	1	Groundwater Conservation District	Sonic/Laser Device		
P	5/22/2012		125	5.00	171	1	Groundwater Conservation District	Sonic/Laser Device		
P	7/5/2012		145.8	20.80	150.2	1	Groundwater Conservation District	Sonic/Laser Device		
P	9/7/2012		136.8	(9.00)	159.2	1	Groundwater Conservation District	Sonic/Laser Device		
P	10/2/2012		146.3	9.50	149.7	1	Groundwater Conservation District	Sonic/Laser Device		
P	11/6/2012		1/5	28.70	121	1	District	Air Line		
P	12/4/2012		182	7.00	114	1	Groundwater Conservation District	Air Line		
P	1/3/2013		123	(59.00)	173	1	Groundwater Conservation District	Electric Line		
P	2/20/2013		122.4	(0.60)	173.6	1	Groundwater Conservation District	Sonic/Laser Device		
P	3/13/2013		123.4	1.00	172.6	1	Groundwater Conservation District	Sonic/Laser Device		
Р	4/29/2013		123.8	0.40	172.2	1	Groundwater Conservation	Sonic/Laser Device		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Р	5/20/2013		124.3	0.50	171.7	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	6/7/2013		125.6	1.30	170.4	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	7/2/2013		165	39.40	131	1	Groundwater Conservation District	Air Line		
Ρ	9/25/2013		198	33.00	98	1	Groundwater Conservation District	Air Line		
Ρ	10/9/2013		197	(1.00)	99	1	Groundwater Conservation District	Air Line		
Ρ	11/19/2013		195	(2.00)	101	1	Groundwater Conservation District	Air Line		
Ρ	12/27/2013		195	0.00	101	1	Groundwater Conservation District	Air Line		
Ρ	1/13/2014		194	(1.00)	102	1	Groundwater Conservation District	Air Line		
Ρ	2/27/2014		179	(15.00)	117	1	Groundwater Conservation District	Air Line		
Ρ	3/18/2014		154	(25.00)	142	1	Groundwater Conservation District	Air Line		
Ρ	4/9/2014		143	(11.00)	153	1	Groundwater Conservation District	Air Line		
Ρ	5/15/2014		138	(5.00)	158	1	Groundwater Conservation District	Air Line		
Ρ	6/26/2014		174	36.00	122	1	Groundwater Conservation District	Sonic/Laser Device		
Ρ	7/16/2014		163	(11.00)	133	1	Groundwater Conservation District	Air Line		
Ρ	8/19/2014		161	(2.00)	135	1	Groundwater Conservation District	Air Line		
Ρ	9/25/2014		161.2	0.20	134.8	1	Groundwater Conservation District	Air Line		
Ρ	10/29/2014		165.9	4.70	130.1	1	Groundwater Conservation District	Air Line		
Ρ	11/19/2014		161.2	(4.70)	134.8	1	Groundwater Conservation District	Air Line		
Ρ	12/31/2014		175	13.80	121	1	Groundwater Conservation District	Air Line		
Ρ	1/30/2015		183	8.00	113	1	Groundwater Conservation District	Air Line		
Ρ	3/2/2015		119	(64.00)	177	1	Groundwater Conservation District	Electric Line		
Ρ	3/19/2015		114	(5.00)	182	1	Groundwater Conservation District	Electric Line		
Ρ	5/28/2015		123	9.00	173	1	Groundwater Conservation District	Electric Line		
Ρ	7/20/2015		138	15.00	158	1	Groundwater Conservation District	Air Line		
Ρ	11/10/2015		130	(8.00)	166	1	Groundwater Conservation District	Electric Line		
Р	1/4/2016		124.45	(5.55)	171.55	1	Groundwater Conservation District	Electric Line		
Ρ	4/11/2016		117.42	(7.03)	178.58	1	Groundwater Conservation District	Electric Line		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	11/15/2016		127.45	10.03	168.55	1	Groundwater Conservation District	Electric Line		
Ρ	1/29/2017		121.15	(6.30)	174.85	1	Groundwater Conservation District	Electric Line		
Ρ	9/22/2017	15:4	133.45	12.30	162.55	1	Groundwater Conservation District	Steel Tape		
Ρ	3/15/2018	8:08	119.28	(14.17)	176.72	1	Groundwater Conservation District	Steel Tape		
Ρ	12/4/2018		125.7	6.42	170.3	1	Groundwater Conservation District	Steel Tape		Static
Ρ	5/3/2019		125.69	(0.01)	170.31	1	Groundwater Conservation District	Steel Tape		Static
Ρ	6/25/2019		122.48	(3.21)	173.52	1	Groundwater Conservation District	Steel Tape		Static < 24 hrs
Ρ	3/12/2020		121.9	(0.58)	174.1	1	Groundwater Conservation District	Steel Tape		Static
Ρ	6/15/2020		146.23	24.33	149.77	1	Groundwater Conservation District	Steel Tape		Static
Ρ	9/29/2020		139.03	(7.20)	156.97	1	Groundwater Conservation District	Steel Tape		
Ρ	12/28/2020		134.52	(4.51)	161.48	1	Groundwater Conservation District	Steel Tape		
Ρ	3/16/2021		130.71	(3.81)	165.29	1	Groundwater Conservation District	Steel Tape		
Ρ	7/2/2021		146.81	16.10	149.19	1	Groundwater Conservation District	Steel Tape		
Ρ	9/24/2021		153.94	7.13	142.06	1	Groundwater Conservation District	Steel Tape		
Ρ	2/8/2022		140.56	(13.38)	155.44	1	Groundwater Conservation District	Steel Tape		
Ρ	7/18/2022		190.75	50.19	105.25	1	Groundwater Conservation District	Steel Tape		

Code Descriptions

Status Code	Status Description	Remark ID	Remark Description
Р	Publishable	2	Pumping-level measurement
Q	Questionable	4	Well pumped recently
Х	No Measurement	16	Tape marked with oil or gasoline
		19	Well pumping

Sample Date: 4/6/1943 Sample Time: 0000 Sample Number: 1 Collection Entity: Registered Water Well Driller

Sampled Aquifer: Simsboro Sand Member of Rockdale Formation

Analyzed Lab: Curtis Lab

Reliability: Reliability unknown or not available

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		385.25	mg/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		470.14	mg/L	
00910	CALCIUM (MG/L)		3.6	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		52	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		12	mg/L	
01045	IRON, TOTAL (UG/L AS FE)		200	ug/L	
00920	MAGNESIUM (MG/L)		0.8	mg/L	
00400	PH (STANDARD UNITS), FIELD		8	SU	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		7.46		
00955	SILICA, DISSOLVED (MG/L AS SI02)		21	mg/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		33.07		
00932	SODIUM, CALCULATED, PERCENT		97	PCT	
00929	SODIUM, TOTAL (MG/L AS NA)	calculate d	208	mg/L	
00945	SULFATE, TOTAL (MG/L AS SO4)		0	mg/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		516	mg/L	

Sample Date: 11/10/1943 Sample Time: 0000 Sample Number: 1 Collection Entity: Municipal Water Agency or Public Water Supply Corp

Sampled Aquifer: Simsboro Sand Member of Rockdale Formation

Analyzed Lab:

Reliability: Reliability unknown or not available

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		349.9	mg/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		427	mg/L	
00910	CALCIUM (MG/L)		3.4	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		48	mg/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.4	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		15	mg/L	
00920	MAGNESIUM (MG/L)		1.8	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		0	mg/L	
00400	PH (STANDARD UNITS), FIELD		8.5	SU	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		6.68		
00955	SILICA, DISSOLVED (MG/L AS SI02)		25	mg/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		23.88		
00932	SODIUM, CALCULATED, PERCENT		96	PCT	
00929	SODIUM, TOTAL (MG/L AS NA)	calculate d	187	mg/L	
00945	SULFATE, TOTAL (MG/L AS SO4)		3	mg/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		478	mg/L	

Sample Date: 12/0/1956 Sample Time: 0000 Sample Number: 1 Collection Entity: Texas Department of Health

Sampled Aquifer: Simsboro Sand Member of Rockdale Formation

Analyzed Lab: Texas Department of Health

Reliability: Reliability unknown or not available

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		296.72	mg/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		362.1	mg/L	
00910	CALCIUM (MG/L)		4	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		50	mg/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.4	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		18	mg/L	
01045	IRON, TOTAL (UG/L AS FE)		300	ug/L	
00920	MAGNESIUM (MG/L)		2	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)	<	0.4	mg/L	
00400	PH (STANDARD UNITS), FIELD		8.2	SU	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		5.57		
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		19.27		
00932	SODIUM, CALCULATED, PERCENT		95	PCT	
00929	SODIUM, TOTAL (MG/L AS NA)	calculate d	189	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		830	MICR	
00945	SULFATE, TOTAL (MG/L AS SO4)		27	mg/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		450	mg/L	

 Sample Date:
 7/22/1980
 Sample Time:
 0000
 Sample Number:
 1
 Collection Entity:
 Texas Water Development Board

Sampled Aquifer: Simsboro Sand Member of Rockdale Formation

Texas Department of Health

Reliability: Collected from pumped well, but not filtered or preserved

Collection Remarks: No Data

Analyzed Lab:

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		11	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		345	mg/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		394.17	mg/L	
00910	CALCIUM (MG/L)		2.8	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		13.2	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		51	mg/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.4	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		9	mg/L	
00920	MAGNESIUM (MG/L)		0.73	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)	<	0.1	mg/L	
00400	PH (STANDARD UNITS), FIELD		8.8	SU	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		6.7		
00955	SILICA, DISSOLVED (MG/L AS SI02)		17	mg/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		23.37		
00932	SODIUM, CALCULATED, PERCENT		97	PCT	
00929	SODIUM, TOTAL (MG/L AS NA)		183	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		805	MICR	
00945	SULFATE, TOTAL (MG/L AS SO4)		1.9	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		21	С	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		463	mg/L	

 Sample Date:
 7/29/1987
 Sample Time:
 0000
 Sample Number:
 1
 Collection Entity:
 Texas Water Development Board

Sampled Aquifer: Simsboro Sand Member of Rockdale Formation

Analyzed Lab: Texas Department of Health

Reliability: Reliability unknown or not available

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		7	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		339	mg/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		396.61	mg/L	
00910	CALCIUM (MG/L)		3	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		8.4	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		41	mg/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.4	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		11	mg/L	
01045	IRON, TOTAL (UG/L AS FE)		30	ug/L	
00920	MAGNESIUM (MG/L)		1	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)	<	0.04	mg/L	
00400	PH (STANDARD UNITS), FIELD		8.7	SU	
00937	POTASSIUM, TOTAL (MG/L AS K)		1	mg/L	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		6.55		
00955	SILICA, DISSOLVED (MG/L AS SI02)		17	mg/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		23.37		
00932	SODIUM, CALCULATED, PERCENT		97	PCT	
00929	SODIUM, TOTAL (MG/L AS NA)		183	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		800	MICR	
00945	SULFATE, TOTAL (MG/L AS SO4)		6	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		34	С	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		455	mg/L	

Sample Date: 7/10/1989 Sample Time: 1000 Sample Number: 1 Collection Entity: Texas Water Development Board

Sampled Aquifer: Simsboro Sand Member of Rockdale Formation

Analyzed Lab: Texas Department of Health

Reliability: Sampled using TWDB protocols

Collection Remarks: faucet

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		6	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		327	mg/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		384.41	mg/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		2.8	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		7.2	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		43	mg/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.4	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		9	mg/L	
71865	IODIDE (MG/L AS I)	<	0.1	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)		46	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		0.5	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)	<	20	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)	<	0.04	mg/L	
00400	PH (STANDARD UNITS), FIELD		8.51	SU	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		2.6	mg/L	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		6.36		
00955	SILICA, DISSOLVED (MG/L AS SI02)		17	mg/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		28.06		
00932	SODIUM, CALCULATED, PERCENT		97	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		194	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		755	MICR	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		6	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		33	С	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		462	mg/L	

Sample Date: 10/7/2009 Sample Time: 1400 Sample Number: 1 Collection Entity: Texas Water Development Board

Sampled Aquifer: Simsboro Sand Member of Rockdale Formation

Analyzed Lab: LCRA - Lower Colorado River Authority

Reliability: Sampled using TWDB protocols

Collection Remarks: Lab Calculated Anion/Cation Chg Bal set to TWDB Calculated Value due to an error in the lab calculated formula

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
39086	ALKALINITY FIELD DISSOLVED AS CACO3		344	mg/L	
82244	ALKALINITY PHENOLPHTHALEIN FIELD DATA (MG/L)		2	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		9	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		332	mg/L	
01503	ALPHA, DISSOLVED (PC/L)		9.2	PC/L	1.9
01106	ALUMINUM, DISSOLVED (UG/L AS AL)	<	4.08	ug/L	
50938	ANION/CATION CHG BAL, PERCENT		-0.54	PCT	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)	<	1.02	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	2.04	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		54.9	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1.02	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		383.18	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)		284	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)		0.2	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1.02	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		2.89	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		10.8	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		47	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)		1.35	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1.02	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)	<	1.02	ug/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.42	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		11	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	51	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1.02	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		17.6	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		0.78	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)		8.16	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	0.2	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)	<	1.02	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)	<	0.02	mg/L	
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)	<	0.02	mg/L	
00300	OXYGEN, DISSOLVED (MG/L)		1.3	mg/L	
00400	PH (STANDARD UNITS), FIELD		8.34	SU	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		1.38	mg/L	
09511	RADIUM 226, DISSOLVED, RADON METHOD, PC/L	<	0.2	PC/L	0.12

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
81366	RADIUM 228, DISSOLVED (PC/L AS RA-228)	<	1.1	PC/L	0.7
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		6.43		
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	4.08	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		17.1	mg/L	
01075	SILVER, DISSOLVED (UG/L AS AG)	<	1.02	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		23.85		
00932	SODIUM, CALCULATED, PERCENT		97	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		177	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		790	MICR	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		191	ug/L	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		2.2	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		33.7	С	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1.02	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		448	mg/L	
22703	URANIUM, NATURAL, DISSOLVED (UG/L AS U)	<	1.02	ug/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)	<	1.02	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)	<	4.08	ug/L	

 Sample Date:
 8/6/2014
 Sample Time:
 1112
 Sample Number:
 1
 Collection Entity:
 Texas Water Development Board

 Sampled Aquifer:
 Simsboro Sand Member of Rockdale Formation
 1
 Collection Entity:
 Texas Water Development Board

Analyzed Lab: LCRA - Lower Colorado River Authority Reliability: Sa

Reliability: Sampled using TWDB protocols

Collection Remarks: Lab Calculated Anion/Cation Chg Bal set to TWDB Calculated Value due to an error in the lab calculated formula

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
39086	ALKALINITY FIELD DISSOLVED AS CACO3		344	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)	<	20	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		331	mg/L	
01503	ALPHA, DISSOLVED (PC/L)		4.68	PC/L	3.38
01106	ALUMINUM, DISSOLVED (UG/L AS AL)		4.7	ug/L	
50938	ANION/CATION CHG BAL, PERCENT		-1.92	РСТ	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)	<	1	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	2	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		57.5	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		403.93	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)		290	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)		0.214	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		2.95	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		47.8	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)		1.15	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)		1.98	ug/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.45	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		11	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	50	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		16.2	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		0.76	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)		8.12	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	0.2	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)	<	1	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)	<	0.02	mg/L	
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)	<	0.02	mg/L	
00400	PH (STANDARD UNITS), FIELD		8.34	SU	
00666	PHOSPHORUS, DISSOLVED (MG/L AS P)		0.0693	mg/L	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		1.49	mg/L	
09503	RADIUM 226, DISSOLVED, PC/L	<	0.98	PC/L	0.15
81366	RADIUM 228, DISSOLVED (PC/L AS RA-228)	<	0.9	PC/L	0.32

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		6.41		
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	4	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		18.3	mg/L	
01075	SILVER, DISSOLVED (UG/L AS AG)	<	1	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		22.96		
00932	SODIUM, CALCULATED, PERCENT		97	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		171	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		810	MICR	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		180	ug/L	
00946	SULFATE, DISSOLVED (MG/L AS SO4)	<	2	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		34.4	С	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		442	mg/L	
22703	URANIUM, NATURAL, DISSOLVED (UG/L AS U)	<	1	ug/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)	<	1	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)	<	4	ug/L	

* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (https://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

`										
Attention Owner: Confidentiality Privilege Notice on reverse side of owner's copy. Toll free (800)803-4 Email address: water well@li					Regula t ram FAX (512) atc.tx.us	463-8616	This f and fi and o upon	Form must be cor led with the dep wner within 60 completion of th	mpleted artment days ne well.	
		WF	CLL REP	ORT						
1) OWNER	A. W	ELL IDENTIFI	CATION	ND LOC	ATION	DATA				
Name Goodland Farms#3	Address Rt. 1	Box 250	Ci	Hearr	ıe	S	tate Tx	Zip 7785	9	
2) WELL LOCATION	Physical Add	ress				is in the second	tate	Zin		
$\mathbb{R}_{\text{Robertson}}$	FM	485		Hearr	ne		Tx	7785	9	
3) Type of Work	Lat.	d lise (check)	Loi	ig.	mental Soil	Roring Dor	Grid # 59	-03-9	NÎ	
Replacement Deepening	Industrial		Injection	Public Si	ipply D	De-watering	Testviell	5)		
6) Drilling Date		amotor of Hole	ruone suppr	7) Dril	ling Mot	hod (check)	Diiven			
Started <u>11 / 18 /02</u>	Dia.(in)	From (ft)	To (ft)	Air	Rotary	Mud Rotary	Driven Pored			
Completed <u>12</u> / 13 / 02	36 24	0 67	67 1187	Air	Hammer er <u>Rev</u>	 Cable Tool Circu 	Jation	G		
fla under de anteres anteres del presentation de la company de atrastición de la company de atrastición de atra	a an			14.015				· · · · · · · · · · · · · · · · · · ·		
	Horsendard	02040370100	material	8) Bor	ehole Co nder-rean	mpletion (ned CKGrave)	Open Ho Packed D	le D Straight Other	: Wall	
40 - 60 Gravel	1 Y	<u> </u>		If Gra Casi	If Gravel Packed give the interval from 825 ft. to 1187 ft. Casing, Blank Pipe, and Well Screen Data					
60 - 142 Sandy Sl	nale	······································		 	New	Steel, Plastic	, etc.	Setting (ft)	Gage	
142 - 495 Shale 8	Rocks	\$		(in.)	Used	Screen Mfg.,	, ele if commercial	From To	Screen	
555 582 Sand					····	Soo Do	+			
582 - 747 Shale 8	Coal					back p	age			
747 - 838 Shale 8	Sand		<i>.</i>							
<u>838 - 985 Shale 8</u>	Sandy	^y Shale		9) Ce	menting	Data () _	10 50	sks		
<u>985 - 1127 Sandy</u>	Shale	87.8		Ceme	Cementing from <u>48</u> ft. to <u>75</u> ft. # of sacks used 50 784 ft to 825 ft # of sacks used 50					
(Use reverse side of Wel	Owner's copy	, If necessary)		Method	Method Used Grout Pressure					
13) Plugged U Well plugged Casing left in well: Cement/Bentonite From (ft) To (ft) From (ft)	d within 48 placed in well; t)	hours	Sacks used	Distance Method	Distance to septic system field (fother concentrated Contamination a_ft. Method of verification of above distance n3/a) M					
					irface Co	mpletion	2 Puppasho IV			
				Spee	ified Surfac	e Sian Installed e Sieeve Installed	2 9 20		<u></u>	
Turbine Jet D Other N/A	Submersible	Cylinder		C App	roved Alter	vative Procedure	Used MOUNT			
Depth to pump bowls, cylinder, jet etc.,	<u>ft.</u>	·····		11) W	ater Lev	el				
15) Water Test Typetest D Pump D Bailer D Jetted D Estimated				Static le Artesia	n Flow	it. below	Date $\frac{1}{1 + \frac{1}{8} + \frac{1}{2}}$	2004		
16) Water Quality				12) Pa	ackers	140 T	/pe	Depth		
Did you knowingly penetrate a strata which contain undesirable constituents.						N/A				
Type of water Depth of Strata Was a chemical analysis made U Yes X No						<u> EQ - CE</u>	NTRAL	FILE ROZ)))[]	
Company or individual's Name (type or print) Design water water and the line No. 52000 MT										
Address 1 Box 702		DITEH M		, Heari	ne internet	ـــــــــــــــــــــــــــــــــــــ	State ^{T X}	zio 78	59	
Signature Donald G	y	12,24	,02			L		/	,	
Licensed Driller/Pump Install	er//	Date		Suala C	Ap	prentice		Date		

Ħ

÷

•

IMPORTANT NOTICE FOR PERSONS HAVING WELL DRILLED CONCERNING CONFIDENTIALITY

۰.

Ì

...

1

iad M

STA

4

, i

2

١.

n) ".

ų.

1: 1

1.

sint

Section 32.005 of the Texas Water Code, concerning confidentiality information in the Reporting of Well Reports, reads as follows:

Every licensed driller drilling, deepening, or otherwise altering a water well in this state shall make and keep a legible and accurate well log in accordance with department rule on forms prescribed by the department. Not later than the 60th day after the completion or cessation of drilling, deepening, or otherwise altering the well, the licensed driller shall deliver or transmit by certified mail a copy of the well log to the department, the Texas Natural Resource Conservation Commission, and the owner of the well or the person for whom the well was drilled. The well log shall be recorded at the time of drilling and must show the depth, thickness, and character of the strata penetrated, the location of water-bearing strata, the depth, size, and character of casing installed, and any other information required by department rule. The department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner or the person for whom the well was drilled.

The last sentence specifies the means whereby you may, if you wish, assure that logs of your wells will be kept confidential.

From (ft)	· To (ft)	Descripti	on and c	olor of	formation	material
1127 -	- 1187	Sand				
Casing	, Blank	Pipe	, & W	le11	Scree	n Data
Dia.	New				Fr	. to
30	N St	eel			0	- 65
16	N St	eel			+2	- 984
516	N Pipe	Base	S.S.	Scr.	984 -	1005
. 16	N Ste	el		1	005 -	1033
16	N Ste	el		. 1	033 -	1:05:4
16	N Ste	el		1	054 -	1082
16	N Pipe	Base	s.s.	Scr.	1082	-1103
16	N Ste	el	с х		1103-	- 1131
16	N Pipe	base S	s.s.s	Scr	1131	- 1173
16	N Ste	èl			1173	- 1175
	N	•				
1						

Gage

•028

.

してた しい

.028

.028

STATE OF TEXAS WELL REPORT for Tracking #127328						
Owner:	Skiles Dr., Cliff	Owner Well #:	Goodland #7			
Address:	Rt. 1 Box 250 Hearne TX 77859	Grid #:	59-11-3			
Well Location:	FM 485 & FM 1644	Latitude:	30° 52' 25" N			
	Hearne, TX 77859	Longitude:	096° 39' 32" W			
Well County:	Robertson	Elevation:	No Data			
Type of Work:	New Well	Proposed Use:	Irrigation			

Drilling Start Date: 11/22/2004 Drilling End Date: 1/10/2007

	Diameter	(in.)	n.) Top Depth (ft.)		Bottom Dept	h (ft.)		
Borehole:	36		0		72			
	24		7	2	1131			
Drilling Method:	Reverse Circu	lation						
Borehole Completion:	Filter Packed							
	Top Depth (ft.)	Bottom Dept	h (ft.)	Filter Material		Size		
Filter Pack Intervals:	908	1113		Gravel		12-20		
	Top Depth (ft.)	Bottom	Depth (ft.)	De	ocks & material)			
Annular Seal Data:	0		12		3 Yds Concr	ete		
	58		72		26 Cemen	t		
	875	ç	808		40 Cemen	t		
Seal Method: Pre	essure & Grout		Di	stance to Pr	operty Line (ft.): 5	0+		
Sealed By: Dri	iller		Distance to Septic Field or other concentrated contamination (ft.): No Data					
		Distance to Septic Tank (ft.): No Data						
				Metho	d of Verification: N	leasured		
Surface Completion:	Surface Slab Ir	nstalled						
Water Level:	76 ft. below la	nd surface o	on 2007-06-	12 Meas	urement Method:	Unknown		
Packers:	No Data							
Type of Pump:	Turbine							
Well Tests:	Jetted No Test Data Specified							

_

	Strata Depth (ft.)	Water Type		
Water Quality:	985-1085	Potable		
		Chemical Analysis Made	No	
	Did the driller	knowingly penetrate any strata which contained injurious constituents?:	No	
Certification Data:	The driller certified th driller's direct superv correct. The driller u the report(s) being re	nat the driller drilled this well (or the we ision) and that each and all of the stat nderstood that failure to complete the eturned for completion and resubmittal	ell was drille ements her required ite	ed under the rein are true and ems will result in
Company Information:	Brien Water Wells	;		
	5214 S Hwy 6 Hearne, TX 77859)		
Driller Name:	G. P. Brien	License	Number:	1750
Comments:	Septic system not ^EO	installed.		

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing: BLANK PIPE & WELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description	Dia. (in.) New/Used Type Setting From/To (ft.)
0	72	clay and gravel and sand	30 N Steel +1-68
72	118	sand and sandy shale	16 N Steel +2-1011
118	171	shale	16 N Pipe Base SS Screen 1011-1111 .030
171	190	sand and sandy shale	16 N Steel 1111-1113
190	198	shale	
198	212	s-shale	
212	213	rock	
213	241	shale	
241	243	rock	
243	285	s-shale and sand and rock	
285	315	sand(b)	
315	320	s-shale	
320	337	shale	
337	470	s-shale and rocks	
470	570	sandy shale and shale	
570	590	shale and soft rocks	
590	730	shale	

730	810	sand and rocks
810	880	shale
880	925	shale and sandy shale
925	926	rock
926	955	sand(b)
955	1004	sand (some streaks of shale)
1004	1010	rock
1010	1024	sand(b)
1024	1042	sand and streak of coal
1042	1049	rock
1049	1118	sand
1118	1120	shale and coal
1120	1130	sand
1130	1131	rock

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

STATE OF TEXAS WELL REPORT for Tracking #443534							
Owner:	Zeig, Joey	Owner Well #:	No Data				
Address:	510 Calvert Street Hearne TX 77859	Grid #:	59-11-3				
Well Location:	Zane Wallace Road	Latitude:	30° 52' 16.02" N				
	Hearne, TX 77859	Longitude:	096° 38' 03.6" W				
Well County:	Robertson	Elevation:	284 ft. above sea level				
Type of Work:	New Well	Proposed Use:	Domestic				

Drilling Start Date: 2/6/2017

Drilling End Date: 2/14/2017

	Diameter (in.	.) Top Dep	oth (ft.)	Bottom Depth (ft.)		
Borehole:	9.875	0	0				
	6.75	35	;	860			
	3.875	860	D	1080			
Drilling Method:	Mud (Hydraulic) Rotary						
Borehole Completion:	Screened						
	Top Depth (ft.) Bottom Depth (ft.)		Description (number of sacks & material,				
Annular Seal Data:	0	10		Concrete 10 Bags/Sacks			
	650	850	Cement 23 Bags/Sacks				
Seal Method: Pi	ressure	Dist	tance to Pro	operty Line (ft.): 100)+		
Sealed By: D	riller	Distan conce	Distance to Septic Field or other concentrated contamination (ft.): 100+				
		D	istance to S	Septic Tank (ft.): 100)+		
			Method	of Verification: ste	pped		
Surface Completion:	Surface Sleeve I	nstalled	Surface Completion by Driller				
Water Level:	135 ft. below lan	nd surface on 2017-02-	13 Measu	urement Method:	Electric Line		
Packers:	K-Packer at 619 Burlap at 966 ft. Burlap at 987 ft.	ft.					
Type of Pump:	Submersible		Pun	np Depth (ft.): 260			
Well Tests:	Jetted Yield: 50+ GPM with 70 ft. drawdown after 12 hours						

	Strata Depth (ft.)	Water Type		
Water Quality:	996 - 1080	good		
		Chemical Analysis Made	: No	
	Did the driller	knowingly penetrate any strata which contained injurious constituents?	No	
Certification Data:	The driller certified th driller's direct superv correct. The driller u the report(s) being re	nat the driller drilled this well (or the we ision) and that each and all of the stat nderstood that failure to complete the eturned for completion and resubmitta	ell was drille ements her required ite l.	ed under the rein are true and ems will result in
Company Information:	Brien Water Wells	;		
	5214 South Highw Hearne, TX 77859	yay 6		
Driller Name:	Pete Brien	License	Number:	1750
Comments:	No Data			

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	27	gravel and sand
27	55	sandy shale and sand
55	90	shale
90	326	sandy shale
326	440	rocks and shale
440	625	sandy shale and sand (B)
625	726	tight shale
726	893	sandy shale and Rocks
893	946	sand
946	986	sandy shale and coal
986	996	sandy shale and sand
996	1080	sand

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
8	Blank	New Plastic (PVC)		0	35
4	Blank	New Plastic (PVC)	40	1.5	850
2	Blank	New Galvanized Steel	40	819	1050
2.5	Screen	New Rod Base Stainless Steel	0.014	1050	1070
2	Blank	New Galvanized Steel	40	1070	1080

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

ATTACHMENT 4 – SELECTED REFERENCES

SELECTED REFERENCES

- Ayers, W. B. Jr, Lewis, Amy H., *The Wilcox Group and Carrizo Sand (Paleogene) in East Central Texas : Depositional Systems and Deep-Basin Lignite*, Bureau of Economic Geology, 1985.
- Dutton, Alan R., Harden, Bob, Nicot, Jean-Philippe, O'Rourke, David O., Tinker, Scott W., Jackson, John, Jackson, Katherine G., *Groundwater Availability Model for the Central Part of the Carrizo-Wilcox Aquifer in Texas*, Prepared for the Texas Water Development Board, February 2003.
- Intera, Inc., 2015, Update on Monitoring Program, Presented at the Post Oak Savannah Groundwater Conservation District Offices, PowerPoint Presentation, November 10, 2015.
- Intera, Inc. *Groundwater Availability Models for the Queen City and Sparta Aquifers*. GAM, Austin. Texas, Water Development Board, 2004.
- Texas Water Development Board Groundwater Database, 2019, http://www.twdb.texas.gov/groundwater/data/index.asp
- Theis, C.V., 1935, The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage: Transactions of the American Geophysical Union, v. 16, p. 519-524.
- Thornhill Group, Inc., 2018, Calvert Mine, Permit No. 27H 2017 Annual Simsboro Depressurization/Drawdown Report, Prepared for Walnut Creek Mining Company for Submittal to the Surface Mining Division of the Texas Railroad Commission, October 19, 2018.
- Thornhill Group, Inc. 2006, A Report of Hydrogeologic Evaluation of Projected Effects of Proposed Pumping of 8,300 Acre-Feet Per Year from Four Wells Completed in the Simsboro Aquifer – Dr. Cliff Skiles Farms, Robertson County, Texas, Prepared for Submittal to the Brazos Valley Groundwater Conservation District, December 27, 2006.
- Young, Steven, PhD, PE, Jigmond, Marius, Jones, Toya, and Ewing, Tom, PhD, PE, Final Report: Groundwater Availability Model for the Central Portion of the Sparta, Queen City, and Carrizo-Wilcox Aquifers, Texas Water Development Board Report ###, September 2018.